Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 353: 141534, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403123

RESUMO

This study assessed the phytotoxicity of a mixture of five different trace elements (TEs) frequently found as pollutants in soils: arsenic, cadmium, copper, lead and zinc. On the other hand, the plant response to a magnetite (Fe3O4) nanoparticle amendment on this mixture as well as nanomagnetite remediation potential has been tested. Sunflower (Helianthus annuus) plants were grown for 90 days in soil contaminated with the five mentioned TEs at the limit levels of TEs in soils likely to receive sludge established by French legislation. Depending on the conditions, experimental set-ups were amended or not with 1% dry weight nanomagnetite (NPsMagn), citric acid-coated nanomagnetite (NPsMagn@CA) or micro-sized magnetite (µPs) in order to assess the behavior of nanomagnetites in a TEs-contaminated water-soil-plant system under repeated water-deficiency stress. The mixture of TEs did not induce phytotoxicity as estimated by plant growth, pigment content, maximum quantum yield of photosynthesis, oxidative impact and antioxidant response. Furthermore, both nanomagnetites treatments in a TEs-contaminated soil significantly increased biomass production by 64 % compared to control and antioxidant enzyme activities compared to control and TEs-treated plants. NPsMagn and NPsMagn@CA particularly enhance phytoextraction of Cd and Cu, increasing the amounts of TEs in aerial parts from 1.5 to 4.5 times compared to set-ups without nanomagnetites. Based on Cd, Cu, Pb and Zn contents in soil solutions, both nanomagnetites treatments improved TEs phytoextraction without increasing groundwater contamination. On the contrary, nanomagnetites significantly reduce arsenic uptake by plants and solubilization in dissolved phase. Our results show that modifying surface physicochemical properties of NPsMagn with citric acid coating does not improve their effects compared to bare NPsMagn. NPsMagn and NPsMagn@CA also appear to mitigate the effects of drought stress. This work highlights several positive environmental aspects related to the use of nanomagnetites in phytoremediation.


Assuntos
Arsênio , Helianthus , Poluentes do Solo , Oligoelementos , Cobre/análise , Cádmio/análise , Arsênio/farmacologia , Antioxidantes/farmacologia , Óxido Ferroso-Férrico , Poluentes do Solo/análise , Oligoelementos/análise , Biodegradação Ambiental , Solo/química , Ácido Cítrico/farmacologia , Água/farmacologia , Nanopartículas Magnéticas de Óxido de Ferro
2.
Nanoscale Adv ; 5(16): 4213-4223, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37560422

RESUMO

Magnetite, a ubiquitous mineral in natural systems, is of high interest for a variety of applications including environmental remediation, medicine, and catalysis. If the transformation of magnetite to maghemite through the oxidation of Fe2+ has been well documented, mechanisms involving dissolution processes of Fe2+ in aqueous solutions have been overlooked. Here, the effect of dissolved organic ligands (EDTA (ethylenediaminetetraacetic acid), acetic, lactic and citric acids) on Fe2+ solubility and on the stoichiometry (Fe(ii)/Fe(iii)) of magnetite-maghemite nanoparticles (∼10 nm) was investigated. These ligands were chosen because of their environmental relevance and because they are widely used as coating agents for nanotechnology applications. Results show an insignificant effect of 2 organic ligands (acetate and lactate) on the dissolution of Fe. By contrast, citrate and EDTA enhanced Fe solubility because of the formation of dissolved Fe(ii)- and Fe(iii)-ligand complexes. Both ligands selectively bound Fe(ii) over Fe(iii), but EDTA was much more selective than citrate. The combined effects of oxidation and H+- and ligand-promoted dissolution of Fe from magnetite were predicted using a magnetite-maghemite solid solution model, accounting for the formation of dissolved Fe(ii)- and Fe(iii)-ligand complexes. Therefore, these results show that citrate and EDTA (i) enhance Fe solubility in the presence of magnetite nanoparticles and (ii) modify magnetite stoichiometry, which affects its environmental behavior and its properties for nanotechnology applications.

3.
NanoImpact ; 31: 100473, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37392957

RESUMO

Soil is now becoming a reservoir of plastics in response to global production, use/disposal patterns and low recovery rates. Their degradation is caused by numerous processes, and this degradation leads to the formation and release of plastic nanoparticles, i.e., nanoplastics. The occurrence of nanoplastics in the soil is expected to both directly and indirectly impact its properties and functioning. Nanoplastics may directly impact the physiology and development of living organisms, especially plants, e.g., by modifying their production yield. Nanoplastics can also indirectly modify the physicochemical properties of the soil and, as a result, favour the release of related contaminants (organic or inorganic) and have an impact on soil biota, and therefore have a negative effect on the functioning of rhizospheres. However all these results have to be taken carefully since performed with polymer nano-bead not representative of the nanoplastics observed in the environment. This review highlight thus the current knowledge on the interactions between plants, rhizosphere and nanoplastics, their consequences on plant physiology and development in order to identify gaps and propose scientific recommendations.


Assuntos
Microplásticos , Plásticos , Plásticos/toxicidade , Solo
4.
Methods Mol Biol ; 2642: 49-81, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36944872

RESUMO

Iron is an essential element for all living organisms, playing a major role in plant biochemistry as a redox catalyst based on iron redox properties. Iron is the fourth most abundant element of the Earth's crust, but its uptake by plants is complex because it is often in insoluble forms that are not easily accessible for plants to use. The physical and chemical speciation of iron, as well as rhizosphere activity, are key factors controlling the bioavailability of Fe. Iron can be under reduced (Fe2+) or oxidized (Fe3+) ionic forms, adsorbed onto mineral surfaces, forming complexes with organic molecules, precipitated to form poorly crystalline hydroxides to highly crystalline iron oxides, or included in crystalline Fe-rich mineral phases. Plants must thus adapt to a complex and changing iron environment, and their response is finely regulated by multiple signaling pathways initiated by a diversity of stimulus perceptions. Higher plants possess two separate strategies to uptake iron from rhizosphere soil: the chelation strategy and the reduction strategy in grass and non-grass plants, respectively. Molecular actors involved in iron uptake and mobilization through the plant have been characterized for both strategies. All these processes that contribute to iron homeostasis in plants are highly regulated in response to iron availability by downstream signaling responses, some of which are characteristic signaling signatures of iron dynamics, while others are shared with other environmental stimuli. Recent research has thus revealed key transcription factors, cis-acting elements, post-translational regulators, and other molecular mechanisms controlling these genes or their encoded proteins in response to iron availability. In addition, the most recent research is increasingly highlighting the crosstalk between iron homeostasis and nutrient response regulation. These regulatory processes help to avoid plant iron concentrations building up to potential cell functioning disruptions that could adversely affect plant fitness. Indeed, when iron is in excess in the plant, it can lead to the production and accumulation of dangerous reactive oxygen species and free radicals (H2O2, HO•, O2•-, HO•2) that can cause considerable damages to most cellular components. To cope with iron oxidative stress, plants have developed defense systems involving the complementary action of antioxidant enzymes and molecular antioxidants, safe iron-storage mechanisms, and appropriate morphological adaptations.


Assuntos
Peróxido de Hidrogênio , Ferro , Ferro/metabolismo , Peróxido de Hidrogênio/metabolismo , Plantas/genética , Homeostase , Transporte Biológico , Antioxidantes/metabolismo
5.
Chemosphere ; 245: 125594, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31855766

RESUMO

This study aimed to assess how bioturbation by freshwater benthic macroinvertebrates with different biological traits alone or in combination could modify trace elements (TE) fate between sediment and water, and if water TE concentration and animal TE content impair their body stores. Three macroinvertebrate species were exposed to TE contaminated sediment for 7 days: the omnivorous Echinogammarus berilloni (Amphipoda), the sediment feeding Tubifex tubifex (Oligochaeta) and the filter feeding Pisidium sp. (Bivalvia). Treatments were one without invertebrates (control), two with amphipods or mussels alone, and the combinations amphipod-mussel, and amphipod-mussel-worms. Water TE concentration increased significantly in 2 or 3 species mesocosms, concerning mainly Rare Earth Elements, Cr, U and Pb, known to be associated to the colloidal phase. By contrast, water soluble TE were not affected by animals. For both, amphipods and mussels, TE body content increased with the number of coexisting species. For amphipods, this increase concerned both, soluble and colloid-associated TE, possibly due to intense contact and feeding from sediment and predation on tubificids. TE bioaccumulation in mussel was less important and characterized by soluble TE, with water filtration as most plausible uptake route. Protein, triglyceride and Whole Body Energy Budget increased in amphipods with the number of coexisting species (probably by feeding on mussels' feces and tubificids) whereas triglycerides declined in mussels (presumably filtration was disturbed by amphipods). This study highlights interspecific interactions as key drivers explaining both: TE bioturbation, depending on their water solubility or colloidal association, and the exposure/contamination of species through another species activity.


Assuntos
Sedimentos Geológicos/análise , Invertebrados/metabolismo , Oligoelementos/análise , Anfípodes/metabolismo , Animais , Bivalves/metabolismo , Água Doce , Invertebrados/química , Oligoquetos/metabolismo , Oligoelementos/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
6.
Environ Pollut ; 257: 113626, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31796322

RESUMO

The oxidation of magnetite into maghemite and its coating by natural organic constituents are common changes that affect the reactivity of iron oxide nanoparticles (IONP) in aqueous environments. Certain ubiquitous compounds such as humic acids (HA) and phosphatidylcholine (PC), displaying a high affinity for both copper (Cu) and IONP, could play a critical role in the interactions involved between both compounds. The adsorption of Cu onto four different IONP was studied: magnetite nanoparticles (magnNP), maghemite NP (maghNP), HA- and PC-coated magnetite NP (HA-magnNP and PC-magnNP, respectively). According to the results, the percentage of adsorbed Cu increases with increasing pH, irrespective of the IONP. Thus, protonation/deprotonation reactions are likely involved within Cu adsorption mechanism. Contrary to the other studied IONP, HA-magnNP favor Cu adsorption at most of the pH tested including acidic pH (pH = 3), suggesting that part of the active surface sites for Cu2+ were not grabbed by protons. The Freundlich adsorption isotherm of HA-magnNP provides the highest sorption constant KF (bonding energy) and n value which supports a heterogeneous sorption process. The heterogeneous adsorption between HA-magnNP and Cu2+ can be explained by both the diversity of the binding sites HA procured and the formation of multidendate complexes between Cu2+ and some of the HA functional groups. Such favorable adsorption process was neither observed on PC-coated-magnNP nor on maghNP, whose behaviors were comparable to that of magnNP. On another hand, HA and PC coatings considerably reduced iron (Fe) dissolution from magnNP as compared with magnNP. It was suggested that HA and PC coatings either provided efficient shield against Fe leaching or fostered dissolved Fe re-adsorption onto the functional groups at the coated magnNP surfaces. Thus, this study can help to better understand the complex interfacial reactions between cations-organic matter-colloidal surfaces which are relevant in environmental and agricultural contexts. This work showed that magnetite NP properties can be affected by surface modifications, which drive NP chemical stability and Cu adsorption, thereby affecting the global water chemistry.


Assuntos
Cobre , Compostos Férricos , Nanopartículas Metálicas , Água , Adsorção , Cobre/química , Poluentes Ambientais/química , Compostos Férricos/química , Substâncias Húmicas , Nanopartículas Metálicas/química , Óxidos/química , Água/química
7.
Environ Sci Technol ; 53(10): 5848-5857, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31038936

RESUMO

The sustainability of ground-source geothermal systems can be severely impacted by microbially mediated clogging processes. Biofouling of water wells by hydrous ferric oxide is a widespread problem. Although the mechanisms and critical environmental factors associated with clogging development are widely recognized, effects of mixing processes within the wells and time scales for clogging processes are not well characterized. Here we report insights from a joint hydrological, geochemical, and metagenomics characterization of a geothermal doublet in which hydrous ferric oxide and hydrous manganese oxide deposits had formed as a consequence of mixing shallow groundwater containing dissolved oxygen and nitrate with deeper, anoxic groundwater containing dissolved iron (FeII) and manganese (MnII). Metagenomics identify distinct bacteria consortia in the pumping well oxic and anoxic zones, including autotrophic iron-oxidizing bacteria. Batch mixing experiments and geochemical kinetics modeling of the associated reactions indicate that FeII and MnII oxidation are slow compared to the residence time of water in the pumping well; however, adsorption of FeII and MnII by accumulated hydrous ferric oxide and hydrous manganese oxide in the well bore and pump riser provides "infinite" time for surface-catalyzed oxidation and a convenient source of energy for iron-oxidizing bacteria, which colonize the surfaces and also catalyze oxidation. Thus, rapid clogging is caused by mixing-induced redox reactions and is exacerbated by microbial activity on accumulated hydrous oxide surfaces.


Assuntos
Água Subterrânea , Ferro , Cinética , Manganês , Oxirredução
8.
Dalton Trans ; 46(39): 13553-13561, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-28952626

RESUMO

The prediction of cerium (Ce) aqueous speciation is relevant in many research fields. Indeed, Ce compounds are used for many industrial applications, which may require the control of Ce aqueous chemistry for their synthesis. The aquatic geochemistry of Ce is also of interest. Due to its growing industrial use and its release into the environment, Ce is now considered as an emerging contaminant. Cerium is also used as a proxy of (paleo)redox conditions due to the Ce(iv)/Ce(iii) redox transition. Finally, Ce(iv) is often presented as a relevant analogue of tetravalent actinides (An(iv)). In the present study, quantum chemical calculations were conducted to highlight the similarities between the structures of Ce(iv) and tetravalent actinide (An(iv); An = Th, Pa, U, Np, Pu) aqua-ions, especially Pu(iv). The current knowledge of An(iv) hydrolysis, solubility and colloid formation in water was briefly reviewed but important discrepancies were observed in the available data for Ce(iv). Therefore, new estimations of the hydrolysis constants of Ce(iv) and the solubility of Ce(iv)-(hydr)oxides are proposed, by analogy with Pu(iv). By plotting pH-Eh (Pourbaix) diagrams, we showed that the pH values corresponding to the onset of Ce(iv) species formation (i.e. Ce(iv)-(hydr)oxide or dissolved Ce(iv)) agreed with various experimental results. Although further experimental studies are required to obtain a more accurate thermodynamic database, the present work might yet help to predict more accurately the Ce chemical behavior in aqueous solution.

9.
Anal Chem ; 87(20): 10346-53, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26383030

RESUMO

The foundation of nanoscience is that the properties of materials change as a function of their physical dimensions, and nanotechnology exploits this premise by applying selected property modifications for a specific benefit. However, to investigate the fate and effect of the engineered nanoparticles on toxic metal (TM) mobility, the analytical limitations in a natural environment remain a critical problem to overcome. Recently, a new generation of size exclusion chromatography (SEC) columns developed with spherical silica is available for pore sizes between 5 and 400 nm, allowing the analysis of nanoparticles. In this study, these columns were applied to the analysis of metal-based nanoparticles in environmental and artificial samples. The new method allows quantitative measurements of the interactions among nanoparticles, organic matter, and metals. Moreover, because of the new nanoscale SEC, our method allows the study of these interactions for different size ranges of nanoparticles and weights of organic molecules with a precision of 1.2 × 10(-2) kDa. The method was successfully applied to the study of nanomagnetite spiked in complex matrixes, such as sewage sludge, groundwater, tap water, and different artificial samples containing Leonardite humic acid and different toxic metals (i.e., As, Pb, Th). Finally, our results showed that different types of interactions, such as adsorption, stabilization, and/or destabilization of nanomagnetite could be observed using this new method.

10.
J Colloid Interface Sci ; 460: 310-20, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26348657

RESUMO

Although it has been suggested that several mechanisms can describe the direct binding of As(III) to organic matter (OM), more recently, the thiol functional group of humic acid (HA) was shown to be an important potential binding site for As(III). Isotherm experiments on As(III) sorption to HAs, that have either been grafted with thiol or not, were thus conducted to investigate the preferential As(III) binding sites. There was a low level of binding of As(III) to HA, which was strongly dependent on the abundance of the thiols. Experimental datasets were used to develop a new model (the modified PHREEQC-Model VI), which defines HA as a group of discrete carboxylic, phenolic and thiol sites. Protonation/deprotonation constants were determined for each group of sites (pKA=4.28±0.03; ΔpKA=2.13±0.10; pKB=7.11±0.26; ΔpKB=3.52±0.49; pKS=5.82±0.052; ΔpKS=6.12±0.12 for the carboxylic, phenolic and thiols sites, respectively) from HAs that were either grafted with thiol or not. The pKS value corresponds to that of single thiol-containing organic ligands. Two binding models were tested: the Mono model, which considered that As(III) is bound to the HA thiol site as monodentate complexes, and the Tri model, which considered that As(III) is bound as tridentate complexes. A simulation of the available literature datasets was used to validate the Mono model, with logKMS=2.91±0.04, i.e. the monodentate hypothesis. This study highlighted the importance of thiol groups in OM reactivity and, notably, determined the As(III) concentration bound to OM (considering that Fe is lacking or at least negligible) and was used to develop a model that is able to determine the As(III) concentrations bound to OM.


Assuntos
Arsenitos/química , Compostos de Sulfidrila/química , Adsorção , Sítios de Ligação , Substâncias Húmicas , Concentração de Íons de Hidrogênio , Ferro/química , Cinética , Ligantes , Compostos Orgânicos/química , Fenóis/química , Potenciometria , Eletricidade Estática , Água/química , Poluentes Químicos da Água/análise
11.
Sci Total Environ ; 515-516: 118-28, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25704268

RESUMO

Arsenic (As) is a toxic and ubiquitous element which can be responsible for severe health problems. Recently, Nano-scale Secondary Ions Mass Spectrometry (nanoSIMS) analysis has been used to map organomineral assemblages. Here, we present a method adapted from Belzile et al. (1989) to collect freshly precipitated compounds of the re-oxidation period in a natural wetland environment using a polytetrafluoroethylene (PTFE) sheet scavenger. This method provides information on the bulk samples and on the specific interactions between metals (i.e. As) and the natural organic matter (NOM). Our method allows producing nanoSIMS imaging on natural colloid precipitates, including (75)As(-), (56)Fe(16)O(-), sulfur ((32)S(-)) and organic matter ((12)C(14)N) and to measure X-ray adsorption of sulfur (S) K-edge. A first statistical treatment on the nanoSIMS images highlights two main colocalizations: (1) (12)C(14)N(-), (32)S(-), (56)Fe(16)O(-) and (75)As(-), and (2) (12)C(14)N(-), (32)S(-) and (75)As(-). Principal component analyses (PCAs) support the importance of sulfur in the two main colocalizations firstly evidenced. The first component explains 70% of the variance in the distribution of the elements and is highly correlated with the presence of (32)S(-). The second component explains 20% of the variance and is highly correlated with the presence of (12)C(14)N(-). The X-ray adsorption near edge spectroscopy (XANES) on sulfur speciation provides a quantification of the organic (55%) and inorganic (45%) sulfur compositions. The co-existence of reduced and oxidized S forms might be attributed to a slow NOM kinetic oxidation process. Thus, a direct interaction between As and NOM through sulfur groups might be possible.


Assuntos
Arsênio/química , Compostos Férricos/química , Substâncias Húmicas/análise , Modelos Químicos , Enxofre/química , Poluentes Químicos da Água/química , Áreas Alagadas , Adsorção , Arsênio/análise , Compostos Férricos/análise , Cinética , Oxirredução , Enxofre/análise , Poluentes Químicos da Água/análise , Espectroscopia por Absorção de Raios X
12.
PLoS One ; 9(7): e102561, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25033299

RESUMO

A metatranscriptomic approach was used to study community gene expression in a naturally occurring iron-rich microbial mat. Total microbial community RNA was reversely transcribed and sequenced by pyrosequencing. Characterization of expressed gene sequences provided accurate and detailed information of the composition of the transcriptionally active community and revealed phylogenetic and functional stratifications within the mat. Comparison of 16S rRNA reads and delineation of OTUs showed significantly lower values of metatranscriptomic-based richness and diversity in the upper parts of the mat than in the deeper regions. Taxonomic affiliation of rRNA sequences and mRNA genome recruitments indicated that iron-oxidizing bacteria affiliated to the genus Leptothrix, dominated the community in the upper layers of the mat. Surprisingly, type I methanotrophs contributed to the majority of the sequences in the deep layers of the mat. Analysis of mRNA expression patterns showed that genes encoding the three subunits of the particulate methane monooxygenase (pmoCAB) were the most highly expressed in our dataset. These results provide strong hints that iron-oxidation and methane-oxidation occur simultaneously in microbial mats and that both groups of microorganisms are major players in the functioning of this ecosystem.


Assuntos
Archaea/genética , Ferro/metabolismo , Leptothrix/genética , Metano/metabolismo , Oxigenases/genética , Sequência de Bases , Biodiversidade , Ecossistema , Perfilação da Expressão Gênica , Consórcios Microbianos/genética , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de RNA
13.
J Colloid Interface Sci ; 359(1): 75-85, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21482426

RESUMO

Few studies have so far examined the kinetics and extent of the formation of Fe-colloids in the presence of natural organic ligands. The present study used an experimental approach to investigate the rate and amount of colloidal Fe formed in presence of humic substances, by gradually oxidizing Fe(II) at pH 6.5 with or without humic substances (HS) (in this case, humic acid--HA and fulvic acid--FA). Without HS, micronic aggregates (0.1-1 µm diameter) of nano-lepidocrocite is obtained, whereas, in a humic-rich medium (HA and FA suspensions at 60 and 55 ppm of DOC respectively), nanometer-sized Fe particles are formed trapped in an organic matrix. A proportion of iron is not found to contribute to the formation of nanoparticles since iron is complexed to HS as Fe(II) or Fe(III). Humic substances tend to (i) decrease the Fe oxidation and hydrolysis, and (ii) promote nanometer-sized Fe oxide formation by both inhibiting the development of hydroxide nuclei and reducing the aggregation of Fe nanoparticles. Bioreduction experiments demonstrate that bacteria (Shewanella putrefaciens CIP 80.40 T) are able to use Fe nanoparticles associated with organic matter about eight times faster than in the case of nano-lepidocrocite. This increase in bioreduction rate appears to be related to the presence of humic acids that (i) indirectly control the size, shape and density of oxyhydroxides and (ii) directly enhance biological reduction of nanoparticles by electron shuttling and Fe complexation. These results suggest that, in wetlands but also elsewhere where mixed organic matter-Fe colloids occur, Fe nanoparticles closely associated with organic matter represent a bioavailable Fe source much more accessible for microfauna than do crystallized Fe oxyhydroxides.


Assuntos
Benzopiranos/metabolismo , Substâncias Húmicas , Ferro/metabolismo , Shewanella putrefaciens/metabolismo , Benzopiranos/química , Coloides/química , Coloides/metabolismo , Concentração de Íons de Hidrogênio , Ferro/química , Oxirredução , Tamanho da Partícula , Shewanella putrefaciens/química , Propriedades de Superfície
14.
J Colloid Interface Sci ; 345(2): 206-13, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20206939

RESUMO

Whereas humic substances are known to play a key role in controlling metal speciation and trace element mobility within soils and waters, the understanding of their structure is still unclear and remains a matter of debate. Several models of humic substance structure have been proposed, where humic substances were composed of either: (i) macromolecular polyelectrolytes that can form molecular aggregates or (ii) supramolecular assemblies (molecular aggregates) of small molecules without macromolecular character, joined together by weak attraction forces. This experimental study was designed and dedicated: (i) to follow the size of organic molecules versus ionic strength or pH by the combined means of ultrafiltration and aromaticity data and rare earth element (REE) fingerprinting, and (ii) to investigate the pH and ionic strength effect on the distribution of associated rare earth elements in soil solution. This study supports the presence of supramolecular associations of small molecules and probably the presence of macromolecules in the bulk dissolved organic matter. By contrast to ionic strength, pH appeared to be the major parameter playing on the stability of the humic substance structure. Humic substances displayed dynamic structures, which evolved with regard to pH. Low pH led to a destabilization of the humic substance conformation. This destabilization had an impact on the trace element distribution in soil solution, as assessed by REE data, and conversely, the destabilization degree of humic substances seemed to be influenced by the metal ion charge.


Assuntos
Substâncias Húmicas , Metais Terras Raras/química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Concentração Osmolar
15.
J Colloid Interface Sci ; 339(2): 390-403, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19733362

RESUMO

Colloidal dissolved organic carbon (DOC) is an important carrier phase for trace elements (TE) in subsurface environments. As suggested by previously published field observations, preferential sorption of DOC onto mineral surfaces tends to enrich the solid phase in humic acids. This DOC fractionation may affect the mobility of TE. pH is known to play an important role in the stability of colloids. This study was therefore dedicated to identifying the influence of DOC fractionation on TE mobility. Sequential extraction has been used to provide information on the possible TE carriers within soil (as exchangeable, weak acid soluble, reducible, oxidizable, and nonextractible metal fractions). Batch experiments were carried out to investigate the influence of pH on the detachment of colloids and associated TE. Different groups of elements were identified according to TE behavior during pH changes. Several elements displayed increasing concentrations with decreasing pH. These concentrations can represent an important fraction of the total soil concentration. By contrast, other elements showed increasing concentrations following increasing pH, in association with an increasing amount of colloids in soil solution. Concerning this latter group, two colloidal carrier phases were identified during the pH increase: (i) the first one concerned the majority of elements, which were associated with humic substances remaining in solution, and (ii) the second one involved several TE rather associated with nanooxides. Therefore, DOC fractionation plays a key role in the TE concentration in soil solution during pH changes.


Assuntos
Substâncias Húmicas , Concentração de Íons de Hidrogênio , Oligoelementos/química , Fracionamento Químico , Coloides/química , Sedimentos Geológicos/química , Solo/análise , Ultrafiltração , Água/química
16.
J Colloid Interface Sci ; 325(1): 187-97, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18556015

RESUMO

Organic or inorganic colloids play a major role in the mobilization of trace elements in soils and waters. Environmental physicochemical parameters (pH, redox potential, temperature, pressure, ionic strength, etc.) are the controlling factors of the colloidal mobilization. This study was dedicated to follow the colloid-mediated mobilization of trace elements through time at the soil/water interface by means of an experimental approach. Soil column experiments were carried out using percolating synthetic solutions. The percolated solutions were ultrafiltrated with various decreasing cutoff thresholds to separate the different colloidal phases in which the dissolved organic carbon and trace element concentrations were measured. The major results which stem from this study are the following: (i) The data can be divided into different groups of organic compounds (microbial metabolites, fulvic acids, humic acids) with regard to their respective aromaticity and molecular weight. (ii) Three groups of elements can be distinguished based on their relationships with the colloidal phases: the first one corresponds to the so-called "truly" dissolved group (Li, B, K, Na, Rb, Si, Mg, Sr, Ca, Mn, Ba, and V). The second one can be considered as an intermediate group (Cu, Cd, Co, and Ni), while the third group gathers Al, Cr, U, Mo, Pb, Ti, Th, Fe, and rare earth elements (REE) carried by the organic colloidal pool. (iii) The data demonstrate that the fulvic acids seem to be a major organic carrier phase for trace elements such as Cu, Cd, Co, and Ni. By contrast, the trace elements belonging to the so-called colloidal pool were mostly mobilized by humic acids containing iron nanoparticles. Lead, Ti, and U were mobilized by iron nanoparticles bound to these humic acids. Thus, humic substances allowed directly or indirectly a colloidal transport of many insoluble trace elements either by binding trace elements or by stabilizing a ferric carrier phase. (iv) Finally, the results demonstrated also that REE were mostly mobilized by humic substances. The REE normalized patterns showed a middle REE downward concavity. Therefore, as previously shown elsewhere humic substances are a major control of REE speciation and REE fractionation patterns as well since the humic substance/metal ratio was the key parameter controlling the REE pattern shape.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...